前缀和

对于一个给定的数列 A, 它的前缀和数列S 是通过递推能求出来得

                                                   S[i] = \sum_{j=1}^{i} A[j]

部分和,即数列A中某个下标区间内的数的和,可以表示为前缀和相减的形式:

                                              sum[l,r] = \sum_{i=l}^{r} A[i] = S[r] - S[l-1]    

代码: 

    for(int i = 1 ; i<=n ; i++ )
	cin >>A[i] ;
	
	for(int i = 1 ; i<=n ; i++ )
	s[i] = s[i-1] + A[i] ;
	

所以每次我们询问区间[L,R] 的和,只需要计算s[R] - s[L-1] 就可以了. 

[差分]  

给你一串长度为n的数列a1,a2,a3......an,要求对a[L]~a[R]进行m次操作:

操作一:将a[L]~a[R]内的元素都加上P

操作二:将a[L]~a[R]内的元素都减去P

最后再给出一个询问求s[L]-s[R]内的元素之和?

当然最暴力的手段是对于每一次操作,我们都要去遍历一下数组再求前缀和,但这样会超时 , 我们用差分就比较方便了. 

我们先来直观的认识一下差分数组:

1 [定义]:

对于已知有n个元素的数列A[1~n],我们可以建立记录它每项与前一项的差值的差分数组B:显然:B[1]=A[1]-0;对于整数i∈[2,n],取A[i]-A[i-1]为其差分数组B[i]的值

2 [简单性质]

(1)计算数列各项的值:可以发现数列A的第i项的值是可以用其差分数组B的前n项和计算,即A[i]=∑B[j](1<=j<=i)

(2)计算数列的前缀和:第i项的前缀和即为数列前i项的和,那么推导可知

即可用差分数组求出数列前缀和

3[用途]:

          (1)  快速处理区间加减操作:

             如果进行区间加减操作,且修改的区间连续,那么若将[x,y]区间内A[i]各加val,我们就可以只对其差分数组B的x和y这两               项进行修改,x项B[x]加val ,y项 B[y+1]减val。

          (2)  询问区间和问题:

             在保证(1)正确修改的基础上,我们可以由性质(2)计算出数列各项的前缀和数组sum各项的值;那么显然,区间                   [L,R]的和即A[L]+…+A[R] = ans = sum[R]-sum[L-1].

      

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+9;
int a[maxn],b[maxn];
int main(){
	int i,j,k,n,m,p;
	cin>>n>>m;
	for(i=1;i<=n;i++){
		cin>>a[i];
	}
	for(i=1;i<=m;i++){
		int L,R,t;
		cin>>t>>L>>R>>p;
		if(t==1){
			b[L]+=p;b[R+1]-=p; //仔细想想为什么b[R+1]要减去p 
		}
		else{
			b[L]-=p;b[R+1]+=p;
		}
	}
	int add=0;
	for(i=1;i<=n;i++){
		add+=b[i];
		a[i]+=a[i-1]+add;
	}
	int x,y;
	cin>>x>>y;
	cout<<a[y]-a[x-1]<<endl;
}

设a数组表示原始的数组;

设d[i]=a[i]-a[i-1](1<i≤n,d[1]=a[1]);

设f[i]=f[i-1]+d[i](1<i≤n,f[1]=d[1]=a[1]);

设sum[i]=sum[i-1]+f[i](1<i≤n,sum[1]=f[1]=d[1]=a[1])。

 

举个例子,我们求1~3的区间和.

后面的可以依次类推。

那么,对于一个操作,我们可以让d[x]加上z,让d[y+1]减小z,就可以了。

还用刚才的例子。

后面的可以依次类推。

参考https://blog.csdn.net/zsyz_ZZY/article/details/79918809

#include<cstdio>
	int n,m,q;
	int a[100000],d[100000],f[100000],sum[100000];
int main()
{
	int x,y,z;
	scanf("%d %d %d",&n,&m,&q);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		d[i]=a[i]-a[i-1];
	}
	for(int i=1;i<=m;i++)
	{
		scanf("%d %d %d",&x,&y,&z);
		d[x]+=z;
		d[y+1]-=z;
	}		
	for(int i=1;i<=n;i++)
	{
		f[i]=f[i-1]+d[i];
		sum[i]=sum[i-1]+f[i];
	}
	for(int i=1;i<=q;i++)
	{
		scanf("%d %d",&x,&y);
		printf("%d\n",sum[y]-sum[x-1]);
	}
}

对于二维数组前缀和.

\large S[i,j] = \sum_{x=1}^{i} \sum_{y=1}^{j} A[x,y]

如图,我们观察 S[i,j] ,S[i-1,j] , S[i,j-1] , S[i-1,j-1] ; 

s[i,j]
S[ i , j ]
S[ i-1 , j ]

 

S[ i -1 , j ] +S[i , j -1 ] 
 S[ i , j-1 ] 

 

 

 


 

 

S[ i-1,  j ] +S[i , j-1 ] - S[ i- 1 ,j -1 ] 

 

 

 

 

 

 

容易得到,  S[ i , j ] = S[ i- 1 ,j ] + S[i , j-1 ]  - S[i - 1 , j-1 ] + A[ i , j ]    , 式子中就包含容斥原理 .

 

为方便理解贴个图

假如我想求a[2][4]的前缀和,我得先加上a[1][4]的前缀和,再加上a[2][3]的前缀和,然后这个时候我们发现实际上a[1][3]这个部分我们加了两遍,所以我们需要再减去一遍a[1][3],于是得出公式a[i][j]+=a[i][j-1]+a[i-1][j]-a[i-1][j-1]。
 

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+9;
int a[maxn][maxn];
int main(){
	int i,j,k,n,m,q;
	cin>>n>>m>>q;
	for(i=1;i<=n;i++){
		for(j=1;j<=m;j++)
		cin>>a[i][j];
	}
	for(i=1;i<=n;i++){
		for(j=1;j<=m;j++)
		a[i][j]+=a[i][j-1]+a[i-1][j]-a[i-1][j-1];
	}
	for(i=1;i<=q;i++){
		int x1,y1,x2,y2;
		cin>>x1>>y1>>x2>>y2;
		int ans=a[x2][y2]-a[x1-1][y2]-a[x2][y1-1]+a[x1-1][y1-1];
		cout<<ans<<endl;
	}
}

 

在学完二维前缀和之后,一些同学可能会有疑问,一维前缀和能用上差分,那么二维前缀和能不能用上差分呢?答案是肯定的。

那么怎么差分呢?方法是和一维类似的,我们也是需要另开一个数组记录修改操作,最后求前缀和时统计修改操作,只是二维每一次操作需要记录4个位置,一维只需要记录2个位置。具体怎么做,看下面代码吧。
 

for(int i=0;i<m;i++){//m是修改操作次数 
	int x1,y1,x2,y2,p;
	cin>>x1>>y1>>x2>>y2>>p;
	b[x1][y1]+=p;b[x2+1][y2+1]+=p;
	b[x2+1][y1]-=p;b[x1][y2+1]-=p;
}

参考博客:  https://blog.csdn.net/k_r_forever/article/details/81775899

相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页